CHROM. 11,414

DIE MICHAELIS-MENTEN-GLEICHUNG ALS EICHFUNKTION BEI RE-MISSIONS-MESSUNGEN NACH DÜNNSCHICHT-CHROMATOGRAPHIE

G. KUFNER und H. SCHLEGEL

Werksärztlicher Dienst, Werk Sindelfingen der Daimler-Benz A.G., D-7032 Sindelfingen (B.R.D.) (Eingegangen am 12. Januar 1978; geänderte Fassung eingegangen am 14. Juli 1978)

SUMMARY

Michaelis-Menten equation as calibration function for remission measurements after thin-layer chromatography

The validity of the Michaelis-Menten equation as calibration function could be demonstrated by means of three compounds with physically different modes of measurement, after remission analysis with thin-layer chromatography: upon the representation of Lineweaver and Burk a straight line can be established as an ideal basis of measurement.

EINLEITUNG

Unseres Wissens fehlt bislang für quantitative Berechnungen nach Dünnschicht-Chromatographie (DC) ein allgemeingültiges Eichprinzip. Hauptsächlich greift man zu Approximationen, wie Ausgleichsparabeln oder zu transformierten Funktionen höherer Ordnung. Eine lineare Eichfunktion mit Nullpunktforderung wird damit selten erreicht.

Die nach Kubelka und Munk¹ benannte Theorie erlaubt zwar eine Linearisierung von DC-Kurven im sichtbaren Bereich; sie ist jedoch aufwendig und wenig praktikabel. Über ihre Anwendung im UV-Bereich und bei fluoreszierenden Verbindungen ist nur wenig bekannt².

Einen neuen Weg geht die in letzter Zeit entwickelte Hochleistungs-DC (HPTLC) oder auch Nanogramm-DC genannt³: die geringen Substanzmengen mit denen dieses Verfahren arbeitet, bietet neben anderen Vorzügen ein scheinbar lineares Interpretieren erhaltener Eichkurven. Jedoch bedingen auch hier zunehmende Konzentrationen einen Übergang der Eichfunktion in Parabeln gemischter höherer Ordnung.

Wir selbst versuchten die aus der Enzym-Theorie stammende Michaelis-Menten-Gleichung auf deren Eignung bei DC-Remissions-Analysen hin zu untersuchen. Die von den Autoren⁴ angegebene Form der Gleichung beschreibt die zeitabhängige Umsetzungsrate eines enzymspezifischen Substrates durch einen Biokatalysator (Enzym) und besitzt den Ausdruck:

$$V = \frac{V_{\text{max.}} \cdot S}{K_{\text{m}} + S} \tag{1}$$

Darin bedeuten: V = Geschwindigkeit; $V_{max.} =$ maximale Geschwindigkeit; S = Substrat: $K_m =$ Konstante nach Michaelis und Menten.

EXPERIMENTELLES

Gerät

Chromatogramm-Spektralphotometer nach E. Stahl Typ KM 3 der Fa. Carl Zeiss (Oberkochen, B.R.D.); Aufstellungsart: "M-Pr". Strahlungsquellen: Hg-Lampe, Deuterium- und Glühlampe. Spaltbild: Einsteckblende 3.5. Nullabgleich sowie Verstärkung erfolgt automatisch. Vorschub am Kreuztisch (y = Achse): 120 mm/min. Kompensationsschreiber (Typ Servogor); Schreiberspannung: 1 V; Messweise: calibriert. Remission: 100% (UV-Messung). Simultanmessung: Transmissionsanteil 80% (Fluoreszenz- und Messung im sichtbaren Bereich mit Glühlampe).

Lösemittel

Methanol, Toluol. Dichlormethan, Aceton, Ameisensäure, Salzsäure 36%; sämtliche Produkte waren vom Typ "zur Analyse" der Fa. Merck (Darmstadt, B.R.D.).

Substanzen

Hippursäure (Benzoylglycin) Mol.-Gew., 179.18 und Protoporphyrin-9-dimethylester Mol.-Gew., 590.70 bezogen wir von Schuchardt (München, B.R.D.); Kopro-III-porphyrin-tetramethylester Mol.-Gew., 710.77 A grade (Calbiochem, San Diego, Calif., U.S.A.) "Pyrrolmonomethylester" Synonym für 2-methyl-3methoxy-4-(3-propionsäuremethylester)-pyrrol, Mol.-Gew., 226.24; Synthese nach Mauzerall und Granick⁵: p-Dimethylaminobenzaldehyd (Merck).

Alle Experimente wurden auf Fertigplatten der Fa. Merck durchgeführt: Art.-Nr. 5729: Kieselgel 60 F_{254} , 10 × 20 cm; Schichtdicke: 2 mm; Art.-Nr. 5626: dto., jedoch ohne Fluoreszenz-Indikator F_{254} . Das Auftragevolumen war in sämtlichen Experimenten 2 µl; desgleichen die Laufstrecke von 10 cm. Die Chromatographie erfolgte in DC-Kammern (20 × 23 × 8 cm) der Fa. Camag (Muttenz, Schweiz). Die Detektion nach Chromatographie wurde mittels UV-Lampe (Camag) 254/366 nm vorgenommen. Als Mass der Konzentration wurde die Peakhöhe in %-Remission verwendet (analoge Anzeige).

Lösungen

(1) Hippursäure (5.70 mmol/l = 1.05 g/l in Methanol); (2) Protoporphyrin-9-dimethylester (0.97 μ mol/l = 0.57 mg/l in Dichlormethan); (3) Kopro-III-porphyrintetramethylester (1.29 μ mol/l = 0.92 mg/l in Dichlormethan); (4) "Pyrrolmonomethylester" (76 μ mol/l = 17.2 mg/l in Dichlormethan).

Von den Lösungen wurden zur Ermittlung der Eichfunktion folgende Verdünnungen aufgetragen: Die Lösung selbst = $C_{(1/1)}$; Verdünnung 1:3 = $C_{(1/3)}$; Verdünnung 1:7 = $C_{(1/7)}$. Aus den Lösungen $C_{(1/1)}$ wurden in einer geometrischen Verdünnungs reihe (Q = 2) definierte Konzentrationen erhalten, welche mittels Eichkurve berechnet wurden: $C_{(1/2)}$, $C_{(1/4)}$, $C_{(1/8)}$ und $C_{(1/16)}$. Die Abweichung des definierten Wertes (Sollwert) zum Errechneten aus der Eichkurve (gefundenen) wurde als \int_{0}^{0} angegeben (s. Tabelle III).

Chromatographische Bedingungen

(A) Hippursäure: Kieselgel 60 F_{254} ; Laufzeit: 35 min (keine Kammersättigung); Laufmittel: Chloroform-Aceton-Ameisensäure (10:1:1, v/v); R_F -Wert: 0.45.

Nach Entwicklung wurde das Chromatogramm 5 min bei 100° exponiert um das Laufmittel zu verflüchtigen. Unter UV-Licht 254 nm, erkennt man die Hippursäure als dunkle Löschungszone. Etwa 1.5 cm vom Spot entfernt (frontal) wurde eine punktförmige Bleistiftmarkierung vorgenommen, welche als Zielpunkt bei der Remissionsmessung diente. KM 3 Geräteparameter: Deuteriumlampe, Wellenlänge 244 nm; Lochblende; Filterscheibe "O".

(B) Protoporphyrin-9-dimethylester, Kopro-III-porphyrin-tetra-methylester und "Pyrrolmonomethylester". Kieselgel 60; Laufzeit: 25 min (Kammersättigung, Filterpapierauskleidung; Äquilibrierungsdauer: 30 min); Laufmittel: Dichlormethan-Toluol-Methanol (8:12:0.5) v/v); R_F -Werte: Protoporphyrin-9-dimethylester 0.56; Kopro-III-porphyrin-tetramethylester 0.38; "Pyrrolmonomethylester" 0.25.

Nach Verflüchtigung des Laufmittels wurden unter durchscheinendem UV-Licht (366 nm) die rotfluoreszierenden Porphyrine bleistiftmarkiert (s. Hippursäure) und mit einer Glasplatte 10×20 cm abgedeckt. KM 3 Geräteparameter (Porphyrine): Hg-Lampe, Anregungswellenlänge: 405 nm; Sekundärfilter: FL 63, Filterscheibe 380– 500. Nach Abschluss der Porphyrin-Messungen wurde das Chromatogramm im Abzug mit modifiziertem Ehrlich's Reagenz (15% p-Dimethylaminobenzaldehyd in 6 N Salzsäure) bis zur Transparenz besprüht. Nach Trocknung (Kaltluftfön) wurde das Chromatogramm mittels Glasplatte abgedeckt. KM 3 Geräteparameter ("Pyrrolmonomethylester"): Glühlampe: Wellenlänge 546 nm, Lochblende, Filterscheibe "O". Die erhaltenen Messwerte siehe Tabelle I.

Die Werte-Paare C und %-R wurden im rechtwinkeligen Koordinatensystem aufgetragen (siehe Fig. 1).

TABELLE I

C(Verdünnung)	С	%-R	Crel.	R _{rel.}	I/Crel.	I/R _{rel.}	$1 - R_{rel.}/C_{rel.}$	$C_{rel.}/R_{rel.}$
1/1	5.70	69.2	1.000	1.000	1.000	1.000	0.000	1.000
1/3	1.90	32.5	0.333	0.470	3.000	2.128	-0.411	0.709
1/7	0.81	17.2	0.143	0.249	7.000	4.016	-0.741	0.574
1/1	0.97	31.2	1.000	1.000	1.000	1.000	0.000	1.000
1/3	0.32	15.2	0.333	0.488	3.000	2.049	-0.465	0.682
1/7	0.14	7.3	0.143	0.234	7.000	4.274	-0.636	0.611
					• •			1.
1/1	1.29	43.0	1.000	1.000	1.000	1.000	0.000	1.000
1/3	0.43	23.0	0.333	0.535	3.000	1.869	0.607	0.622
1/7	0.17	12.0	0.143	0.279	7.000	3.584	-0.951	0.513
1/1	76.00	69. 0	1.000	1.000	1.000	1.000	0.000	1.000
1/3	25.30	49.9	0.333	0.723	3.000	1.383	1.171	0.461
1/7	10.90	32.1	0.143	0.465	7.000	2.151	-2.252	0.308
	C(Verdännucg) 1/1 1/3 1/7 1/1 1/3 1/7 1/1 1/3 1/7 1/1 1/3 1/7	C(Verdünnung) C 1/1 5.70 1/3 1.90 1/7 0.81 1/1 0.97 1/3 0.32 1/7 0.14 1/1 1.29 1/3 0.43 1/7 0.17 1/1 76.00 1/3 25.30 1/7 10.90	C(Verdännung) C %-R 1/1 5.70 69.2 1/3 1.90 32.5 1/7 0.81 17.2 1/1 0.97 31.2 1/3 0.32 15.2 1/7 0.14 7.3 1/1 1.29 43.0 1/3 0.43 23.0 1/7 0.17 12.0 1/1 76.00 69.0 1/3 25.30 49.9 1/7 10.90 32.1	C(Verdünnung) C %-R Cret. 1/1 5.70 69.2 1.000 1/3 1.90 32.5 0.333 1/7 0.81 17.2 0.143 1/1 0.97 31.2 1.000 1/3 0.32 15.2 0.333 1/7 0.14 7.3 0.143 1/1 1.29 43.0 1.000 1/3 0.43 23.0 0.333 1/7 0.17 12.0 0.143 1/1 76.00 69.0 1.000 1/3 25.30 49.9 0.333 1/7 10.90 32.1 0.143	C(Verdiannung) C %-R Crel. Rret. 1/1 5.70 69.2 1.000 1.000 1/3 1.90 32.5 0.333 0.470 1/7 0.81 17.2 0.143 0.249 1/1 0.97 31.2 1.000 1.000 1/3 0.32 15.2 0.333 0.488 1/7 0.14 7.3 0.143 0.234 1/1 1.29 43.0 1.000 1.000 1/3 0.43 23.0 0.333 0.535 1/7 0.17 12.0 0.143 0.279 1/1 1.600 69.0 1.000 1.000 1/3 0.43 23.0 0.333 0.535 1/7 0.17 12.0 0.143 0.279 1/1 76.00 69.0 1.000 1.000 1/3 25.30 49.9 0.333 0.723 1/7 10.90 32.1 <t< td=""><td>C(Verdünnung) C %-R Crel. Rrel. I/Crel. 1/1 5.70 69.2 1.000 1.000 1.000 1/3 1.90 32.5 0.333 0.470 3.000 1/7 0.81 17.2 0.143 0.249 7.000 1/1 0.97 31.2 1.000 1.000 1.000 1/3 0.32 15.2 0.333 0.488 3.000 1/7 0.14 7.3 0.143 0.234 7.000 1/1 1.29 43.0 1.000 1.000 1.000 1/7 0.14 7.3 0.143 0.234 7.000 1/1 1.29 43.0 1.000 1.000 1.000 1/3 0.43 23.0 0.333 0.535 3.000 1/7 0.17 12.0 0.143 0.279 7.000 1/1 76.00 69.0 1.000 1.000 1.000 1/3 25.30<</td><td>$C_{(Verdannung)}$ C $\%$-R $C_{rel.}$ $R_{ret.}$ $l/C_{rel.}$ $l/R_{rel.}$ $1/1$ 5.70 69.2 1.000 1.000 1.000 1.000 $1/3$ 1.90 32.5 0.333 0.470 3.000 2.128 $1/7$ 0.81 17.2 0.143 0.249 7.000 4.016 $1/1$ 0.97 31.2 1.000 1.000 1.000 1.000 $1/3$ 0.32 15.2 0.333 0.488 3.000 2.049 $1/7$ 0.14 7.3 0.143 0.234 7.000 4.274 $1/7$ 0.14 7.3 0.143 0.234 7.000 3.584 $1/7$ 0.17 12.0 0.143 0.279 7.000 3.584 $1/1$ 76.00 69.0 1.000 1.000 1.000 1.000 $1/3$ 25.30 49.9 0.333 0.723 3.000 1.383 $1/7$ 10.9</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></t<>	C(Verdünnung) C %-R Crel. Rrel. I/Crel. 1/1 5.70 69.2 1.000 1.000 1.000 1/3 1.90 32.5 0.333 0.470 3.000 1/7 0.81 17.2 0.143 0.249 7.000 1/1 0.97 31.2 1.000 1.000 1.000 1/3 0.32 15.2 0.333 0.488 3.000 1/7 0.14 7.3 0.143 0.234 7.000 1/1 1.29 43.0 1.000 1.000 1.000 1/7 0.14 7.3 0.143 0.234 7.000 1/1 1.29 43.0 1.000 1.000 1.000 1/3 0.43 23.0 0.333 0.535 3.000 1/7 0.17 12.0 0.143 0.279 7.000 1/1 76.00 69.0 1.000 1.000 1.000 1/3 25.30<	$C_{(Verdannung)}$ C $\%$ -R $C_{rel.}$ $R_{ret.}$ $l/C_{rel.}$ $l/R_{rel.}$ $1/1$ 5.70 69.2 1.000 1.000 1.000 1.000 $1/3$ 1.90 32.5 0.333 0.470 3.000 2.128 $1/7$ 0.81 17.2 0.143 0.249 7.000 4.016 $1/1$ 0.97 31.2 1.000 1.000 1.000 1.000 $1/3$ 0.32 15.2 0.333 0.488 3.000 2.049 $1/7$ 0.14 7.3 0.143 0.234 7.000 4.274 $1/7$ 0.14 7.3 0.143 0.234 7.000 3.584 $1/7$ 0.17 12.0 0.143 0.279 7.000 3.584 $1/1$ 76.00 69.0 1.000 1.000 1.000 1.000 $1/3$ 25.30 49.9 0.333 0.723 3.000 1.383 $1/7$ 10.9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

KOORDINATEN-WERTE DER RELATIVEN EICHKURVEN NACH LINEWEAVER UND BURK, HOFSTEE UND AUGUSTINSON BZW. UNTRANSFORMIERT

Fig. 1. Untransformierte Eichkurven nach Dünnschicht-Chromatographie. Es bedeuten: 1 = Hippursäure (C = mmol/l); 2 = Protoporphyrin-9-dimethylester ($C = \mu \text{mol/l}$); 3 = Kopro-III-porphyrin-tetramethylester ($C = \mu \text{mol/l}$); 4 = "Pyrrolmonomethylester" ($C = \mu \text{mol/l}$).

Den Eichkurven aus Fig. 1 ist gemeinsam, dass niedrige Konzentrationen (C) mit den entsprechenden Remissionen (%-R) nahezu linear ansteigen (Bereich der Nanogramm-DC). Bei weiterer C-Zunahme wird $\frac{6}{2}$ -R immer geringer, sodass dieser allmählich in einen asymptotischen Zustand übergeht. In diesem Grenzbereich ist eine quantitative Messung nicht mehr möglich. Wählt man einen Kurvenabschnitt, welcher sich im Messbereich befindet, so liegt es nahe diesen als Definitionsbereich zwischen 0 und 1 zu begrenzen, zu relativieren. Der erlaubte Messbereich ist weitgehend von der verwendeten Wellenlänge und der Blendeneinstellung abhängig. Wir gingen dabei so vor, dass das 1%-R von $C_{(1/1)}$ und $C_{(1/3)}$ mindestens 25% betragen sollte. Dies ist natürlich ein willkürlich angenommenes Vorgehen, denn je grösser das 1%-R ist, umso besser wird die Präzision der Messung. Die Relativierung der Koordinatenpaare gelingt bei den %-R-Werten apparativ indem die Konzentration $C_{(1/1)}$ auf 100% Schreiberausschlag (= 1) getrimmt wird oder arithmetisch. Bei letzterem werden die übrigen Werte mit dem reziproken Wert von $C_{(1/1)}$ bzw. $R_{(1/1)}$ multipliziert. Daraus entstehen: C_{rel} und R_{rel} (Index rel. steht für relativ). Die relativierten Werte siehe Tabelle I. In der graphischen Darstellung von C_{rel} und R_{rel} erhält man zu den beiden Diagonalen des Koordinatensystems symmetrische Eichkurven vom Hyperbeltyp (s. Fig. 2).

Die reziproke Umwandlung der relativen Form führt unmittelbar zur Linearisierung: Darstellung nach Lineweaver und Burk⁶. Die Geraden sind vom Typ: $Y = A + B \cdot C$ (s. Fig. 3). Aus $C_{rel.}$ folgt $1/C_{rel.}$ sowie $R_{rel.}$ zu $1/R_{rel.}$ (s. Tabelle I).

Die Darstellung nach Lineweaver und Burk lässt charakteristische Merkmale erkennen: Den Geraden ist gemeinsam, dass diese durch P(1/1) gehen, bei P(0/1) die Ordinate und im negativen Teil zwischen P(0/0) und $P(0/-\infty)$ die Abszisse schneiden. Diese Schnittpunkte bedeuten im einzelnen: P(1/1) = Bezugspunkt 1 der relativen Eichkurve. P(0/1) = (Ordinatenschnittpunkt): $R_{max} =$ Asymptote der Eichkurve (analog V_{max}). $P(0/-\infty) =$ (Abszissenschnittpunkt): Michaelis-Menten-Konstante

Fig. 2. Die Eichkurven (s. Fig. 1) nach deren relativer Transformierung.

Fig. 3. Darstellung der relativen Eichkurven nach Lineweaver und Burk.

 (K_m) . Diese ist ein Mass der Hyperbelkrümmung und bedeutet als $(K_m + 1)$ in %-R von $R_{(1/1)}$ ausgedrückt: R_{max} ./2. Diese Konstante halbiert den Bereich zwischen %-R = 0 und %- R_{max} . K_m selbst wird ∞ bei linearem Zusammenhang. Je grösser ihr reziproker Zahlenwert umso ausgeprägter wird die Hyperbelkrümmung.

Substituiert man Gleichung l durch die entsprechenden Parameter R und C so erhält man in erster Näherung:

$$\%-R = \frac{R_{\max} \cdot C}{K_m + C}$$

Da unter relativen Bedingungen R_{max} unklar ist, soll dieser Term anhand der Lineweaver und Burk Darstellung abgeleitet werden: Die Steigung der Geraden ist gegeben durch den Kotangens a (ctg a):

$$\operatorname{ctg} a = \frac{1/C_{\text{rel.}} - 1}{1/R_{\text{rel.}} - 1} \operatorname{bzw.} \frac{K_m + 1}{K_m}$$

Der Ordinatenschnittpunkt ist:

$$\frac{1}{R_{\max}} = 1 - \frac{1}{\operatorname{ctg} a}$$
$$\frac{1}{\operatorname{ctg} a} = \frac{K_m}{K_m + 1}$$

Durch Substitution folgt:

$$\frac{1}{R_{\text{max.}}} = 1 - \frac{K_m}{K_m + 1}$$

Dann wird:

.

$$\frac{1}{R_{\text{max.}}} = \frac{1}{K_m + 1}$$
$$R_{\text{max.}} = K_m + 1$$

Die endgültige Form der Michaelis-Menten-Gleichung erhält unter relativen Bedingungen folgenden Ausdruck:

$$R_{\rm rel.} = \frac{(K_m + 1) \cdot C_{\rm rel.}}{K_m + C_{\rm rel.}}$$
(2)

Die Darstellung nach Lineweaver und Burk erhält dann die Form:

$$\frac{1}{R_{\rm rel.}} = \frac{K_m + C_{\rm rel.}}{(K_m + 1) \cdot C_{\rm rel.}}$$
(3)

Zerlegung führt zu:

$$\frac{1}{R_{\text{rel.}}} = \frac{K_m}{(K_m+1)\cdot C_{\text{rel.}}} + \frac{C_{\text{rel.}}}{(K_m+1)\cdot C_{\text{rel.}}}$$

Durch Umformen lässt sich obiger Ausdruck in die graphische Darstellung überführen (s. Fig. 4a):

$$\frac{1}{R_{\rm rel.}} = \frac{1}{(K_m + 1)} + \frac{K_m}{(K_m + 1)} \cdot \frac{1}{C_{\rm rel.}}$$

Auflösung der Gleichung 2 nach $C_{rel.}$ ergibt:

$$C_{\rm rel.} = \frac{R_{\rm rel.} \cdot K_m}{(K_m + 1) - R_{\rm rel.}} \tag{4}$$

Für Berechnungen ist der Weg über die erst zu ermittelnde K_m umständlich, schneller gelangt man über den ctg *a* zum Ergebnis: Substitution mit 1/ctg a ergibt:

$$C_{x} = \frac{C_{\text{St}}}{\left[\left(\frac{1}{R_{\text{rel.} < x>}} - 1\right) \cdot \operatorname{ctg} a\right] + 1}$$
(5)

Fig. 4. Darstellung von $Y = A + B \cdot C$, (a) Nach Lineweaver und Burk; (b) nach Hofstee; (c) nach Augustinson.

Index x = gesuchte Konzentration und Index St = Standard-Konzentration. Aus der Darstellung (s. Fig. 4a) lassen sich die Kurvenparameter als Kotangensfunktionen, wie folgt angeben (s. Tabelle II):

$$K_{m} = \frac{1}{\operatorname{ctg} a - 1}$$

%-R_{max.} (Asymptote): = $\frac{\operatorname{ctg} a}{\operatorname{ctg} a - 1} \cdot \%$ -R_(1/1) bzw.
= $(K_{m} + 1) \cdot \%$ -R_(1/1)

TABELLE II

PARAMETER DER MICHAELIS-MENTEN-EICHFUNKTION

Parameter	ctg a _(1/3)	ctg a(1/7)	ctg a _(x)	_1% ctg a	K _m	R _{mgx} (° ₀)	Crel.(1/2)	R _{rel.(1/2)}	K
Hippursäure	1.771	1.985	1.878	+5.68	1.139	148	0.653	0.347	1.306
Protoporphyrin- 9-dimethylester	1.900	1.833	1.866	- 1.80	1.155	67	0.650	0.350	1.300
Kopro-III- porphyrin- tetramethylester	2.300	2.323	2.311	+ 0.49	0.763	76	0.698	0.302	1.396
"Pyrrolmono- methylester"	5.225	5.220	5.222	-0.05	0.237	85	0.839	0.161	1.678

 $(% - R_{(1/1)})$ bedeutet die untransformierte Remission von $C_{(1/1)}$

$$C_{\text{rel.(1/2)}} = \frac{\operatorname{ctg} a}{\operatorname{ctg} a + 1}$$

$$R_{\text{rel.(1/2)}} = 1 - \frac{\operatorname{ctg} a}{\operatorname{ctg} a + 1}$$

$$\operatorname{ctg} a_{(\bar{x})} = \frac{\operatorname{ctg} a_{(1/3)} + \operatorname{ctg} a_{(1/7)}}{2}$$

$$A_{0}^{\circ} \operatorname{ctg} a = \frac{(\operatorname{ctg} a_{(1/7)} - \operatorname{ctg} a_{(\bar{x})}) \cdot 100}{\operatorname{ctg} a_{(\bar{x})}}$$

$$K = \frac{C_{\text{rel.(1/2)}}}{0.5}$$

Die Funktionen $C_{rel.(1/2)}$ und $R_{rel.(1/2)}$ sind geeignet um die relative Eichkurve (s. Fig. 2) darzustellen, gleichzeitig sind sie ein Mass der Hyperbelkrümmung: Über $C_{rel.(1/2)}$ lässt sich eine Verhältniszahl bilden = K (Krümmung). Nimmt man an, dass $C_{rel.(1/2)}$ von 0.5 die ideale Gerade ist, so nehmen Abweichungen, welche durch K_m definiert sind den doppelten $C_{rel.(1/2)}$ -Wert an. Definitionsbereich: 1.000 (Gerade) bis 2.000 (Asymptote). Als Mass der Übereinstimmung der Eichkurve betrachten wir Δ % ctg a. Es ist dies die %-Abweichung von ctg $a_{(\bar{x})}$ aus ctg $a_{(1/3)}$ und ctg $a_{(1/7)}$. Wir orientierten uns am ± 5 %-Bereich.

Substituiert man Gleichung 2 mit der ermittelten K_m -Konstante sowie %- R_{max} . (Asymptote) und löst nach C auf, dann ergibt sich:

$$C = \frac{\sqrt[6]{-R \cdot K_m}}{\sqrt[6]{-R_{\text{max.}} - \sqrt[6]{-R}}}$$
(6)

Durch Einsetzen von C_{st} folgt:

$$C_{\mathbf{x}} = \left(\frac{\sqrt[n]{-R} \cdot K_{m}}{\sqrt[n]{-R_{max}} - \sqrt[n]{-R}}\right) \cdot C_{\mathsf{St}}$$
(6a)

Die Gleichungen 5 sowie 6a sind formal äquivalent und gelten für den Konzentrationsbereich $0 - \gamma_0 - R_{max}$.

Weitere Darstellungsarten

(1) Nach Hofstee⁷. Aus Gleichung 2 folgt durch Division mit C_{rel} .

$$R_{\rm rel.} = \frac{K_m \div 1}{\frac{K_m}{C_{\rm rel.}} \div 1}$$

Umformen:

$$(K_m + 1) = R_{\text{rel.}} \cdot \frac{K_m}{C_{\text{rel.}}} + R_{\text{rel.}}$$
$$(1 - R_{\text{rel.}}) = \frac{K_m \cdot R_{\text{rel.}}}{C_{\text{rel.}}} - K_m$$

Graphische Darstellung (s. Fig. 4b und Fig. 5):

$$R_{\rm rel.} = 1 + K_m \cdot \left(1 - \frac{R_{\rm rel.}}{C_{\rm rel.}}\right)$$

Die quantitative Berechnung bei gegebener Remission erfolgt über die K_m :

$$K_m = \frac{1 - R_{\text{rel.}}}{1 - \frac{R_{\text{rel.}}}{C_{\text{rel.}}}}$$

oder

$$= \frac{C_{\text{rel.}} (1 - R_{\text{rel.}})}{R_{\text{rel.}} - C_{\text{rel.}}}$$
$$C_{\text{rel.}} = \frac{K_m \cdot R_{\text{rel.}}}{(1 - R_{\text{rel.}}) + K_m}$$
$$C_x = \frac{K_m \cdot R_{\text{rel.}} \cdot C_{\text{St.}}}{(1 - R_{\text{rel.}}) + K_m}$$

(2) Nach Augustinson⁷. Ausgehend von der Lineweaver-Burk-Darstellung (s. Fig. 3) erfolgt nach Multiplikation von C_{rel} :

$$\frac{C_{\text{rel.}}}{R_{\text{rel.}}} = \frac{C_{\text{rel.}}}{K_m + 1} + \frac{K_m}{K_m + 1}$$

Zerlegung führt zur graphischen Darstellung (s. Fig. 4c und 6):

$$\frac{C_{\text{rel.}}}{R_{\text{rel.}}} = \frac{K_m}{K_m + 1} + \frac{1}{K_m + 1} \cdot C_{\text{rel.}}$$

Fig. 6. Darstellung der relativen Eichkurven nach Augustinson.

Berechnung von C_x erfolgt analog dem Vorgehen nach Hofstee:

1

$$(K_{m} - 1) = \frac{1 - C_{\text{rel.}}}{1 - \frac{C_{\text{rel.}}}{R_{\text{rel.}}}}$$
$$K_{m} = \frac{1 - C_{\text{rel.}}}{1 - \frac{C_{\text{rel.}}}{R_{\text{rel.}}}} - \frac{1 - C_{\text{rel.}}}{R_{\text{rel.}}}$$

oder

$$= \frac{(1 - C_{\text{rel.}}) \cdot R_{\text{rel.}}}{R_{\text{rel.}} - C_{\text{rel.}}} - 1$$

$$C_{\text{rel.}} = \frac{K_m \cdot R_{\text{rel.}}}{(1 - R_{\text{rel.}}) + K_m}$$

$$C_x = \frac{K_m \cdot R_{\text{rel.}} \cdot C_{\text{st.}}}{(1 - R_{\text{rel.}}) + K_m}$$

Die Darstellungen nach Hofstee und Augustinson sind für die Berechnung von C_x weniger geeignet, da in einem zusätzlichen Rechenschritt K_m errechnet werden muss. Sie eignen sich aber gut, um Eichpunkte graphisch besser interpolieren zu können.

DISKUSSION

Unter den üblichen physikalischen Messarten innerhalb der analytischen DC finden sich Messungen im sichtbaren Bereich (400-700 nm), dem UV-Bereich (200-400 nm) und Messungen fluoreszierender Verbindungen nach Anregung zumeist mit Hg-Lampe. Um die Gültigkeit der Michaelis-Menten-Gleichung beweisen zu können, wählten wir Verbindungen, welche den oben erwähnten Eigenschaften entsprachen: Die Hippursäure mit UV-Absorption bei 244 nm, den "Pyrrolmonomethylester" mit Absorption im Sichtbaren bei 546 nm, sowie zwei Porphyrine als Träger fluoreszierender Eigenschaften: Protoporphyrin-9 und Kopro-III-porphyrin. Die vorgenommene

TABELLE III

Parameter	Verdünnung	Csollwert	Csesunden	Remission(%)	∆%-Abweichung
Hippursāure					· · ·
C = mmol/l	1/2	2.85	2.84	45.0	-0.35
	1/4	1.43	1.46	27.2	+2.10
	1/8	0.71	0.74	15.1	+4.23
	1/16	0.36	0.38	9.1	+5.56
Protoporphyrin- 9-dimethylester					•
$C = \mu \text{mol/l}$	1/2	0.49	0.47	19.8	-4.08
	1/4	0.24	0.24	11.9	0.00
	1/8	0.12	0.13	6.0	+8.33
	1/16	0.06	0.06	3.5	0.00
Kopro-III-porphyrin-					
tetramethylester	1/2	0.65	0.66	30.5	+1.54
$C = \mu \text{mol/l}$	1/4	0.32	0.32	18.5	0.00
	1/8	0.16	0.15	10.0	-6.25
	1/16	0.08	0.08	5.8	0.00
"Pyrrolmono- methylester"					
$C = \mu \text{mol/l}$	1/2	38.00	38.40	58.1	+1.05
	1/4	19.00	18.30	43.0	3.68
	1/8	9.50	10.00	30.5	+5.26
	1/16	4.75	4.81	18.0	+5.26

VERGLEICH VON DEFINIERTEN KONZENTRATIONEN (= SOLLWERT) UND NACH BERECHNUNG MITTELS MICHAELIS-MENTEN-EICHFUNKTION (= GEFUNDEN)

Erstellung der Eichkurve nach Relativierung durch die Verdünnungsstufen: $C_{(1/1)}$, $C_{(1/3)}$ und $C_{(1/7)}$ konnte für diese Beispiele die Richtigkeit der Übereinstimmung der Michaelis-Menten-Gleichung mit der nach DC auftretenden Eichfunktion bestätigen: Die durch geometrischen Verdünnungsreihen definierten Sollwerte (s. Tabelle III) konnten anhand der Eichkurve mit nicht signifikanten Abweichungen innerhalb des 5%-Bereiches gemessen werden. Hinweise auf das Ausmass der Eichkurven-Krümmung geben ctg a, K_m , $C_{rel.(1/2)}$, $R_{rel.(1/2)}$, und K. Mittels 0, 1, $C_{rel.(1/2)}$ und $R_{rel.(1/2)}$ lässt sich in einer 4-Punkt-Konstruktion die relative Eichkurve (s. Fig. 2) rasch graphisch ermitteln und optisch in ihrer Krümmung abschätzen. Unter den Krümmungsparametern ist K der anschaulichste: K-Werte grösser als 1.500 bedingen zunehmende Verschlechterung der Präzision und sind ein Hinweis auf zu grosse Dichte am Messort (s. "Pyrrolmonomethylester" mit 1.678). Mit K = 2.000 wird die Asymptote (%- R_{max}) erreicht. K-Werte kleiner als 1.500 bedeuten den günstigsten Messbereich. Die 3-Punkt-Eichung (ctg $a_{(1/3)}$, ctg $a_{(1/7)}$ und 1) betrachten wir nach Abschluss der Untersuchungen zumindest für unsere Problemstellung als überbestimmt. Es genügt, da die Linearität vorausgesetzt werden kann, die 2-Punkt-Eichung (1 und ctg $a_{(1/n)}$) über eine dem Analysenproblem angepasste Verdünnung.

ZUSAMMENFASSUNG

Mittels 3 physikalisch unterschiedlich messbarer Verbindungen konnte die

Gültigkeit der Michaelis-Menten-Gleichung nach Remissionsanalyse bei Dünnschichtchromatographie aufgezeigt werden: nach Relativierung der Eichkurven lässt sich in der Lineweaver-Burk-Darstellung eine Gerade als ideale Messbasis ermitteln.

LITERATUR

.

- 1 P. Kubelka und F. Munk, Z. Techn. Phys., 12 (1931) 593.
- 2 S. Ebel und H. Kussmaul, Chromatographia, 7 (1974) 197.
- 3 J. Ripphahn und H. Halpaap, J. Chromatogr., 112 (1975) 81.
- 4 L. Michaelis und M. L. Menten, Biochem. Z., 49 (1913) 333.
- 5 D. Mauzerall und S. Granick, Biol. Chem., 219 (1956) 435.
- 6 H. Lineweaver und D. Burk, J. Amer. Chem. Soc., 56 (1934) 658.
- 7 G. S. Eadie, J. Biol. Chem., 146 (1942) 85.